¹⁹F to ¹H and ¹H to ¹⁹F Cross Polarization MAS NMR of Trifluoroethanol Chemisorbed on Magnesium Oxide

David B. Ferguson, Thomas R. Krawietz and James F. Haw*

Laboratory for Magnetic Resonance and Molecular Science, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA

¹⁹F magic angle spinning NMR studies of surfaces are greatly facilitated by ¹H to ¹⁹F cross polarization and ¹H decoupling.

Fluorine in various chemical forms is involved in many areas of surface chemistry including lubrication,¹ dry etching of semiconductors² and finishing textile fibres.³ Catalyst systems containing fluorine include acidic perfluorosulfonate polymers (Nafion),⁴ supported SbF₅⁵ and fluorinated alumina.⁵ An extensive catalytic science is also devoted to the production of CFC replacements that contain hydrogen as well as fluorine.⁶

Although 19F NMR has been successfully applied to a variety of solids including fluoropolymers and minerals,⁷ and surface NMR studies employing various nuclei are legion,8 there have been relatively few high resolution ¹⁹F NMR studies of surfaces or catalysts.9,10 The reasons for this slow progress are largely technological. Hydrogen occurs along with fluorine in many chemically interesting surface and catalysis contexts, and this introduces appreciable ¹⁹F-¹H dipolar couplings. Furthermore, fluoropolymers are used extensively in NMR probe construction; although the background signals from these are relatively modest compared with signals from pure compounds and polymers, they nearly preclude ¹⁹F studies of surfaces. Mehring reported non spinning ¹⁹F spectra of solids with ¹H dipolar decoupling in 1977,¹¹ but the general application of this technique was, until recently, restricted by the problem of isolating two radio frequencies differing by only 6%. Drawing on improvements in NMR probe technology, Harris and coworkers¹² and Hagaman and coworkers¹³ have independently reported studies suggesting that ¹⁹F NMR of solids is coming of age. Harris demonstrated that a combination of magic angle spinning (MAS) and high-power proton decoupling can provide high resolution ¹⁹F spectra of solid fluorinated organic compounds such as steroid derivatives.

In recent months, we have applied ¹⁹F NMR with ¹H decoupling in preliminary studies of a variety of problems in surface chemistry and catalysis. Here, we report the first description of that effort and emphasize the value of ¹H to ¹⁹F and ¹⁹F to ¹H cross polarization processes for surface selectivity. We report results on a single sample, 1,1,1-tri-fluoroethanol adsorbed on high surface area MgO¹⁴ at a coverage, 1.2 mmol g⁻¹, slightly greater than one monolayer. The acidic adsorbate readily chemisorbs on the strongly basic surface to give the structure below.

The dynamics of both ¹H to ¹⁹F and ¹⁹F to ¹H CP were probed at spinning speeds of 8 kHz and matched spin lock fields of *ca*. 90 kHz on each channel. Variable contact time studies were fit to determine CP time constants of 0.52 ms for ¹H to ¹⁹F, and 0.87 ms for ¹⁹F to ¹H. Direct measurement of $T_{1\rho}$ values were 15.6 ms for ¹⁹F and 17.1 ms for ¹H; these direct values were within 20% of those obtained by fitting the fall-off rates of the variable contact time data. The combination of relatively fast CP and slow $T_{1\rho}$ relaxation is advantageous for obtaining representative CP spectral intensity, and of the ten or so catalyst-adsorbate systems thus far investigated we have had

Fig. 1 188.7 MHz ¹⁹F MAS spectra of trifluoroethanol on MgO. (*a*) 3 kHz MAS obtained with single pulse excitation and 90 kHz ¹H decoupling. (*b*) 3 kHz CP–MAS (¹H to ¹⁹F) and ¹H decoupling. (*c*) 3 kHz CP–MAS obtained without ¹H decoupling. (*d*) 14.5 kHz CP–MAS obtained with ¹H decoupling. (*e*) 14.5 kHz CP–MAS obtained without ¹H decoupling. Number of transients: (*a*) 100, (*b*–*e*) 256. 90° pulses were 3 μ s, and cross polarization contact times were 2 ms.

difficulty in obtaining ${}^{1}H{-}{}^{19}F$ CP spectra only for physiadsorbed species at high temperatures.

Representative ¹⁹F MAS spectra of 1 are shown in Fig. 1. Using single pulse excitation (Bloch decay) the ¹⁹F background signal due to Teflon-containing probe components, including the most commonly used type of tuning capacitors, is sufficient to almost preclude surface NMR [Fig. 1(a)]. In contrast, no background signals were observed with ¹H-¹⁹F CP, or with the reverse of that prior to ¹H observation. The ¹⁹F spectrum with ¹H decoupling and slow speed (3 kHz) MAS, Fig. 1(b), suggests the superposition of signals from a mobile component without sidebands and a less mobile components with spinning sidebands. This interpretation is consistent with an otherwise identical spectrum obtained without ¹H decoupling during acquisition [Fig. 1(c)]. ¹H-¹⁹F dipolar couplings had no effect on ca. 25% of the total ¹⁹F intensity, but broadened the signal from the remaining spins, including the sideband pattern, to a featureless line 10 to 15 kHz in width. Increasing the spinning speed to 14.5 kHz independently averaged the heteronuclear dipolar couplings, and proton decoupling then had no additional effect on the line shape [Fig. 1(d) and (e)].

We conclude that NMR investigations of fluorine in surface chemistry are now feasible. Support for our *in situ* NMR studies of catalytic reactions and the construction of the spectrometer used in this investigation was provided by the National Science Foundation (CHE-9221406). The ¹⁹F MAS probe was constructed by Otsuka-Chemagnetics and spun 4-mm zirconia sample rotors.

Received, 4th May 1995; Com. 5/02860D

1796

References

- 1 C. F. McFadden and A. J. Gellman, Langmuir, 1995, 11, 273.
- 2 G. S. Oehrlein, Y. Zhang, D. Vender and M. Haverlag, J. Vac. Sci. Technol. A, 1994, 12, 323.
- 3 N. S. Rao and B. E. Baker, in *Organofluorine Chemistry*, ed. R. E. Banks, B. E. Smart and J. C. Tatlow, Plenum, New York, 1994, ch. 14.
- 4 G. A. Olah, P. S. Iyer and G. K. S. Prakash, Synthesis, 1986, 513.
- 5 A. K. Ghoshand and R. A. Kydd, Catal. Rev. Sci. Eng., 1985, 27, 539.
 6 L. E. Manzer, Science, 1990, 249, 31.
- 7 R. K. Harris and P. Jackson, *Chem. Rev.*, 1991, **91**, 1427.

- J. CHEM. SOC., CHEM. COMMUN., 1995
- 8 NMR Techniques in Catalysis, ed. A. T. Bell and A. Pines, Marcel-Dekker, New York, 1994.
- 9 C. V. A. Duke, J. M. Miller, J. H. Clark and A. P. Kybett, J. Mol. Catal., 1990, 62, 233.
- 10 F. M. Asseid, C. V. A. Duke and J. M. Miller, Can. J. Chem., 1990, 68, 1420.
- 11 H. Raber and M. Mehring, Chem. Phys., 1977, 26, 123.
- 12 S. A. Carss, R. K. Harris, P. Holstein, B. J. Say and R. A. Fletton, J. Chem. Soc., Chem. Commun., 1994, 2407.
- 13 S. A. Vierkötter and E. W. Hagaman, presented at the Experimental NMR Conference, Boston, MA, March 1995, poster 378.
- 14 A. A. Kheir and J. F. Haw, J. Am. Chem. Soc., 1994, 116, 817.